Evidence-based Strategies in Augmentative and Alternative Communication (AAC) and Applied Behavior Analysis (ABA) for Autism and Developmental Disabilities

Oliver Wendt, Tim Courtney, Kasey Philpott, & Ning Hsu
Speech, Language, and Hearing Sciences, & Educational Studies
Purdue University
Little Star Center Inc., Lafayette, IN
Workshop for Indiana Mentor
April 3, 2014

Program

- AAC in Autism Introduction
 - Picture Exchange Communication System (PECS)
 - Speech-Generating Devices (SGDs)
- Moving from PECS to SGDs and iPads
- Effects of iPad-based Interventions
- Verbal Behavior (VB) Review
- Selection-based vs. Topography-based VB
- Programming Selection-based VB using SGDs
- General Recommendations

Autism Spectrum Disorders (ASD)

Triad of symptoms with
1. Impairments in language and communication
 - Deficits in language can range from completely nonverbal to acquiring the ability to speak.
2. Impairments in social interaction
 - Results in lack of motivation to communicate with other people – even when these individuals have acquired some language competence and use.
3. Restricted and repetitive patterns of behavior
 - Pre-occupation with restricted patterns of interest can impede social and communicative development.

Language Difficulties

When expressive language develops, first word often spoken between 2-3 yrs., but early language marked by
- Delay in development of intentional communication
- Greater propensity to use challenging behavior to communicate
- Limitations in joint attention, range of communicative functions, higher proportion of imperatives
- Repetitive or idiosyncratic language
 (Prelock, 2006)

Proportion of Nonverbal Children with ASD

- Autism includes a “delay in, or lack of the development of spoken language” (American Psychiatric Association, 2000)
- 14-25% of children diagnosed with an autism spectrum disorder (ASD) present with little or no functional speech (Lord & Bailey, 2002; Lord, Risi, & Pickles, 2004)
 - Autistic disorder only: 50% of children are functionally non-verbal
 - No sufficient natural speech or writing to meet their daily communication needs (Light, Roberts, DiMarco, & Greiner, 1998) => Candidates for intervention in augmentative and alternative communication

Disclosure Statement

Oliver Wendt is Chief Science Officer for SPEAK MODalities, LLC.
Other Developmental Disabilities (DD)

- Intellectual Disability: umbrella term for large range of syndromes and conditions that result in cognitive impairment
 - Commonly experience significant difficulty with spoken communication
 - Many do not use speech as primary mode of communication
 - High incidence of problem behavior
- Cerebral Palsy
 - Unique motor control issues
 - Up to two thirds also experience intellectual disability

Proportion of Nonverbal Children with DD

- Prevalence of Intellectual Disability is between 1-3% worldwide (WHO, 2001)
- ID may be largest proportion of school-age individuals that require AAC supports
- Up to 38% of preschool-age children with ID have AAC needs (Beukelman & Mirenda, 2013)
- AAC is crucial part of service delivery to this population (National Joint Committee for the Communication Needs of Persons with Severe Disabilities, 2003)

AAC and Autism

- AAC strategies particularly used in ASDs/DDs:
 - Manual signs and gestures
 - Pictographic symbols sets/systems
 - High technology speech generating devices (SGDs) for synthesized and/or digitized speech output
- Practitioners face difficult task selecting a suitable approach
- Evidence-based practice (EBP):
 - Using research outcomes as a major basis for clinical and educational decisions (Lloyd, 2001)

Evidence-based Strategies in AAC

EXCHANGE-BASED GRAPHIC SYMBOL SETS

Picture Exchange Communication System (PECS)

- Structured behavioral intervention program to teach use of visual-graphic symbols for communication (Bondy & Frost, 1994)
- Teaches to make requests by handing/exchanging symbols for desired items

Picture Exchange Communication System (PECS)

- Picture Exchange Communication System (PECS) protocol (Bondy & Frost, 1994)
 - Phase I: Physical Exchange
 - Phase II: Expanding Spontaneity
 - Phase III: Picture Discrimination
 - Phase IV: Sentence Structure
 - Phase V: Responding to “What do you want?”
 - Phase VI: Responsive and Spontaneous Commenting
Why Choose PECS?
- Requires very few prerequisites
 - Only prerequisite individual can clearly indicate wants and needs
- First skill taught in PECS is requesting
 - Often targeted in early instruction of individuals with developmental disabilities due to motivational considerations (Reichle & Sigafoos, 1991)
- Systematically targets spontaneous communication acts, a particular deficit in autism
- PECS graphic symbols are highly iconic
 - Can be easily recognized by the learner and are more recognizable by communicative partners

PECS: Empirical Evidence
- Systematic reviews (particularly meta-analyses) are preferred evidence to document empirical support:
 - Preston and Carter (2009)
 - Increase in communication skills in most learners, effects on problem behavior reduction and increasing natural speech less clear
 - Hart and Banda (2010)
 - Increases in functional communication skills in all but 1 subject
 - Flippin, Reszka, and Watson (2010)
 - “Promising but not yet established evidence-based intervention for facilitating communication in children with ASD ages 1–11 years”

PECS Summary
- Considerable empirical support for using PECS as a beginning communication strategy
- Overall shows strong effectiveness for teaching initial requesting skills
- Some evidence to indicate: more effective than manual signing in terms of requesting
- Effect is less clear for other outcome variables such as speech production, social or challenging behavior
- When treatment goals is speech production ⇒ no sufficient evidence to inform practice in favor of PECS or manual signing
 - In general, mixed results on this outcome measure

PECS Summary (cont.)
- Methodological issues in PECS studies
 - Often lack investigation of maintenance
 - Skill generalization sometimes reported, but what counts as generalization varies greatly
 - Participant descriptions lack detail
 - Sparse reports of treatment integrity

⇒ PECS appears as a promising intervention that presents with emerging empirical support, but critical questions are still to be answered

Speech-Generating Devices (SGDs)
- Portable, computerized devices producing synthetic or digitized speech output when activated
- Graphic symbols are used to represent messages, activated by finger, switch, head stick, etc., selecting a symbol from the display
- LightWRITER
- BIGMack

Evidence-based Strategies in AAC
SPEECH-GENERATING DEVICES
Evidence-based Strategies in AAC

Indiana MENTOR
April 3, 2014

SGDs (cont.)
- Fixed Display
 - Graphic symbols located in separate squares of a grid, organized into rows and columns
 - Limited vocabulary
- Dynamic Display
 - Selection from a display results in a new array of graphic symbols
 - Larger vocabulary sets

SGDs (cont.)
- Visual Scene Displays
 - Language concepts are embedded into contextual scenes
 - Objects and events within the photograph are then used as symbols for communication
 - May be used in a dynamic display system
- Example of a child with ASD using an SGD:
 - http://www.youtube.com/watch?v=s4GAX-IXE_k&NR=1
- Example of synthetic speech output:
 - http://www2.research.att.com/~ttsweb/tts/demo.php#top

⇒ Not ideal for learners with severe autism due to sensory processing difficulties

Why Choose SGDs?
- Allows composing more detailed messages
 - Enable user to communicate very precise requests and prevent communication breakdown
- Voice output (aka speech output) may facilitate acquisition and maintenance of communication skills
- Producing speech can be perceived as more natural
 - Better intelligibility
 - Easier to get attention
 - Higher likelihood of receiving a listener response
- iPads and other tablet devices are
 - Lightweight and portable
 - Cost-efficient compared to dedicated SGDs
 - Easy to program
 - Highly motivating to use
 - Socially appealing (peer acceptance)
SGDs: Empirical Evidence

Baseline Video Clip

PECS Phase I Video Clip
End

PECS Phase II Video Clip
End

ProxTalker Phase II Video Clip
Beginning

ProxTalker Phase V
End

iPad Phase
End
- Moving from Mid-Technology (ProxTalker) to High-Technology (iPad)

Demo IPAAC app (c) Purdue University
Evidence-based Strategies in AAC

SPEAKall!
- Originally developed by Purdue Engineering Students
- The purpose is to help teach the process of constructing simple sentences and early symbol vocabulary
- Customizable to each child’s specific needs
- Seamlessly connects with PECS or ProxTalker intervention
- Selection Area on top replaces PECS book
- Sentence Strip at bottom speaks selected graphic symbols
- **DOWNLOAD ON ITUNES:**
 - Search for “speakall!”
 - Free version
 - SPEAKall! Premium ($24.99)
 - SPEAKall! Premium Plus ($39.99)

SPEAKall! Benefits
SPEAKall! is based on Rigorous Scientific Research

Brain Imaging Evidence
Pre-treatment brain activity
Post-treatment brain activity
Behavioral Evidence
SPEAKall! Benefits
SPEAKall! allows an easy transition from exchange-based communication to using a tablet device.

SPEAKall! Benefits
SPEAKall! is an autism-friendly app that reduces cognitive load and minimizes sensory difficulties.

Autism Apps can be Noisy Places for Those Who Cannot Process It

- Difficulty to filter out salient and truly important incoming stimuli from a stimulus-rich environment (Minshew & Williams, 2007)
- For the beginning communicator with autism, graphic symbols should be carefully chosen and not be presented alongside other conflicting visual stimuli on the screen
- Hierarchical organization of graphic symbol vocabulary increases cognitive load

Case Example: Difficulty with Hierarchical Organization

SPEAKall! can be used with children, adolescents AND adults.
Evidence-based Strategies in AAC

SPEAKall! Benefits
SPEAKall! allows parents to be involved in intervention

SPEAK MODalities
Future Products
- SPEAK together!
 - Cloud-based data management
- SPEAK cloud!
 - Cloud-based content/Sharing of content
- SPEAK one!
 - Cause and effect, tablet candidacy
- SPEAK more!
 - Training of language and generalization

Hands-On Exercises
- How to Program SPEAKall!
 - Basic Navigation
 - Play Mode
 - Learner Selection
 - Learner Settings
 - Preferences
 - Screen Lock
 - Administrator Mode
 - Learner Profiles
 - Media Collections
 - Add Activities
 - Manage Activities

Check out “SPEAK MODalities” YouTube channel for tutorials!

SPEAKall! Resources
- Website: www.speakmod.com
- YouTube Channel: http://www.youtube.com/channel/UCNg-ywou0ESwl_wwPDvhGUOG
 OR SEARCH: SPEAK MODalities
- Facebook Site: https://www.facebook.com/speakmod

Please like SPEAK MOD!
Evidence-based Strategies in AAC

Please follow SPEAK MOD!

Evidence-based Strategies in AAC
EFFECTS OF IPAD-BASED AAC

Participant Characteristics

<table>
<thead>
<tr>
<th>Participant</th>
<th>Dx*</th>
<th>Communication Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>“1”: Male, 10 yrs.</td>
<td>severe autism</td>
<td>limited speech – vocalizations, gestures</td>
</tr>
<tr>
<td>“2”: Male, 13 yrs.</td>
<td>severe autism</td>
<td>limited speech – vocalizations, jargon</td>
</tr>
<tr>
<td>“3”: Male, 10 yrs.</td>
<td>severe autism</td>
<td>highly echolalic, jargon, no functional, meaningful words</td>
</tr>
<tr>
<td>“4”: Male, 12 yrs.</td>
<td>severe autism</td>
<td>mainly nonverbal with few vocalizations, some gestures</td>
</tr>
</tbody>
</table>

*based on ADOS and CARS scores

iPad and SPEAKall!
Participant 3 - Baseline

iPad and SPEAKall!
Participant 3 - Middle Stages

iPad and SPEAKall!
Participant 3 – End
Conclusions

- Findings provide support that AAC can have facilitative effect on natural speech development
 - There may be a particular role for shaping echolalic utterances
 - Refute myth that AAC prevents speech
- Confirm augmented input may enhance expressive and receptive communication development
- Confirm PECS principles (behavioral) hold true regardless of modality
Evidence-based Strategies in AAC

Benefits of Parent Involvement

- Involving parents as trainers can maximize benefits of speech-language interventions (Kaiser et al., 2000)
 - AAC interventions can be expensive
 - Often lack of qualified personnel
 - If parents can be trained to conduct AAC intervention at home, children may obtain more consistent benefits from AAC without extra costs
- Little research in AAC and ASD on parent-training (Park et al., 2011)

Training Approach

- Parent-implemented intervention: Parents receive comprehensive training
 - General workshop at parent support group
 - Written instructions
 - Modeling and role playing
 - Video resources
 - Sole trainer for child, clinician only provides feedback
- Two clinicians with advanced PECS training independently checking sessions for treatment integrity.
- Treatment schedule was 2 days/week, with 1-2 sessions each day

Parent Training

- 1. Conduction a preference assessment. Repeat this every 5 trials.
- 2. Put a bag of the preferred snack item on the table and have the corresponding graphic symbol displayed in SPEAKall!
- 3. Trainer 1: place iPad in front of the child and entice with the preferred item.
- 4. Trainer 2: provide prompting for dragging and dropping graphic symbol onto sentence strip. Fade out over time.
- 5. Trainer 1: once sentence strip is activated, give desired item to child and say the item name.
- 6. Give the child time to consume the snack item or play with the preferred toy.
- 7. Trainer 1: press “return cards” button to start a new trial. Begin to entice with the desired item again.
- 8. Switch communication partners. Make sure child can request at least 3 different items before moving on to the next phase.

Parent Training (cont.)

- Modeling of intervention steps
- Role-playing with clinician
- Treatment integrity checklists for each phase
- Need to have 100% correct during role-play

Training materials:
- Cheat sheets
- YouTube videos

www.youtube.com/channel/UCNq-yegu0ESeLaePDvG8GUQg
Participant Characteristics

<table>
<thead>
<tr>
<th>Participant</th>
<th>Age/Gender</th>
<th>Dx*</th>
<th>Communication Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sally</td>
<td>7 yrs./Female</td>
<td>severe autism</td>
<td>some echolalia and scripted speech, less than 15 functional words</td>
</tr>
<tr>
<td>Leo</td>
<td>8 yrs./Male</td>
<td>moderate-severe autism, dual diagnosis: Down syndrome</td>
<td>no vocalizations, no functional speech</td>
</tr>
<tr>
<td>Stan</td>
<td>6 yrs./Male</td>
<td>severe autism</td>
<td>vocalization and jargon, no meaningful words, no functional speech</td>
</tr>
</tbody>
</table>

*based on ADOS and CARIS scores

Participant Sally

Phase 1 – One-symbol Requests

Phase 2 – Distance and Persistence

Phase 3 – Symbol Discrimination

Phase 4 – Sentence Structure
Participant Sally
Phase 5 – “What Do You Want?”

Participant Sally
Phase: iPad Fadeout

Participant Sally
Maintenance and Generalization

Current Progress: Participant Leo

Current Progress: Participant Stan

Families That Dropped-out
Discussion

- Results underscore the potential of including parents for maximizing benefits of AAC intervention in autism
- Clinicians should recognize the value of joint parent-professional partnerships, and develop expertise for parent training
- PECS principles (behavioral) and instruction can be combined with parent training

Discussion (cont.)

Potential limitations to parent-implemented intervention:
- Burden on family schedule
- Ability to handle problem behavior
- Finding trained personnel to work with

Parent Perspective

Acknowledgements

- Aforementioned projects were supported by
 - Project Development Team within the ICTSI NIH/NCRR Grant Number RR025761
 - Technology Development Grant from the Innovation and Commercialization Center – Information Technology
 - Research Fellowship from Purdue Center for Families
 - Organization for Autism Research Applied Research Grant
 - Purdue Research Foundation Trask Award
 - Purdue Research Foundation International Travel Grant

Acknowledgements (cont.)

- Thanks to ProxTalker.com, LLC for providing devices!
- Thanks to Purdue EPICS Team!
- Thanks to the families who agreed to participate in our research!

Acknowledgements (cont.)

- Thanks to the following individuals for their help with data collection and reliability analyses:
 - Colleen Coleman
 - Zhihua Dong
 - Casey Hobbs
 - Ning Hsu
 - Kim LeCleir
 - Kara Simon
 - Minghua Tan
 - Katelyn Warner
Indiana MENTOR

Questions ???

References

References (cont.)

References (cont.)

References (cont.)

References (cont.)

Contact

Oliver Wendt, Ph.D.
Department of Speech, Language, and Hearing Sciences
HEAV 202D, Purdue University
West Lafayette, IN 47907-2038, USA
E-mail: olli@purdue.edu
Web: http://www.speakmod.com
References (cont.)

References: PECS Studies

References: PECS Studies (cont.)

References: SGD Studies

References (cont.)

References: SGD Studies (cont.)

References: PECS to SGDs

References: PECS to SGDs (cont.)

